E E NOT MEASUREMENT

SENSITIVE

MIL-STD-498

5 December 1994

(PDEF version)
Superseding

DOD-STD-2167A
29 February 1988
DOD-STD-7935A
31 October 1988
DOD-STD-1703(NS)
12 February 1987

MILITARY STANDARD

SOFTWARE DEVELOPMENT

AND DOCUMENTATION

AMSC NO. N7069 AREA: IPSC/MCCR

DISTRIBUTION STATEMENT A. Apoproved for public release: distribution is unlimited.

The appearance of the PDF version of this document is somewhat different from it's paper version because font metrics vary among computers and printers even when PostScript® fonts are used. Also, the original WP 5.1 files were edited for improved screen readability and text selection when using the PDF Reader. NO wording changes or corrections were made!

Use the Select Text tool from the Tools menu to highlight text to be copied into a word processor or other application.

Use the Find tool (Ctrl/Cmd+F) to search for text.

Use Print to print one or more pages.

This Portable Document Format version of MIL-STD-498 and its DIDs has been made available by the NCCOSC Software Engineering Process Office in San Diego, CA.

Adobe's Portable Document Format provides machine- independent viewing, printing and text selection for any "PostScript®-printable" document for Windows®, System7, and certain UNIX machines. The Reader is free and may be downloaded via the Internet or a bulletin board.

Adobe may be contacted at 1-800-872-3623 or http://www.adobe.com.

Click once on the upper left hand corner of this box to close it.

MIL-STD-498 (PDF version) Foreword Page ii

FOREWORD
1. This Military Standard is approved for use by all Departments and Agencies of the
Department of Defense.
2. Beneficial comments (recommendations, additions, deletions) and any pertinent data which

may be of use in improving this document should be addressed to SPAWAR 10-12, 2451 Crystal
Drive (CPK-5), Arlington, VA 22245-5200. The comments may be submitted by letter or by using
the|Standardization Document Improvement Proposal (DD Form 1426) appearing at the end of
this document.

3. This standard merges DOD-STD-2167A and DOD-STD-7935Alto define a set of activities
and documentation suitable for the development of both weapon systems and Automated
Information Systems. A conversion guide from these standards to MIL-STD-498 is provided in
Appendix|l] Other changes include improved compatibility with incremental and evolutionary
development models; improved compatibility with non-hierarchical design methods; improved
compatibility with computer-aided software engineering (CASE) tools; alternatives to, and more
flexibility in, preparing documents; clearer requirements for incorporating reusable software;
introduction of software management indicators; added emphasis on software supportability; and
improved links to systems engineering. This standard supersedes DOD-STD-2167A, DOD-STD-
7935A, and DOD-STD-1703 (NS).

4, This standard can be applied in any phase of the system life cycle. It can be applied to
contractors, subcontractors, or Government in-house agencies performing software development.
For uniformity, the termis used for the organization requiring the technical effort, the
termfor the organization performing the technical effort, and the term "contract" for
the agreement between them. The term|"software development'|is used as an inclusive term
encompassing new development, modification, reuse, reengineering, maintenance, and all other
activities resulting in software products.

5. This standard is not intended to specify or discourage the use of any particular software
development method. The developer is responsible for selecting software development methods
that support the achievement of contract requirements.

6. This standard implements the development and documentation processes of ISO/IEC DIS
12207. It interprets all applicable clauses in MIL-Q-9858A (Quality Program Requirements) and
ISO 9001 (Quality Systems) for software.

7. This standard includes all activities pertaining to software development. It invokes no
other standards. It can be applied on its own or supplemented with other standards, such as
those identified in Section|6! If other standards are applied, the acquirer is responsible for
resolving any conflicts that arise.

8. Data Item Descriptions (DIDs) applicable to this standard are listed in Section|6] These
DIDs describe the information required by this standard.

9. This standard and its Data Item Descriptions (DIDs) are meant to be tailored by the
acquirer to ensure that only necessary and cost-effective requirements are imposed on software
development efforts. General tailoring guidance can be found in Section/6land in DOD-HDBK-
248. Tailoring guidance specific to this standard can be found in Appendixes|GlandH|and in
guidebooks and handbooks planned for this standard.

SCOPE . . it 1
L.d| PUIPOSE . . 1

1.2 Application 1

1.2.1 Organizations and agreements 1

1.2.2 Contract-specific application 1

1.2.3 Tailoring 1

1.2.4 Interpretation of selectedterms 1

1.2.4.1 Interpretation of "system" 1

1.2.4.2 Interpretation of "participate” in system development 2

1.2.4.3 Interpretation of "develop," "define,"etc 2

1.2.4.4 Interpretation of "record” 2

Order of precedence 2
REFERENCED DOCUMENTS e e 3
DEFINITIONSottt e e e e e e e 4
GENERAL REQUIREMENTS e 8
4.1 Software development ProCeSSttt 8

4.2| General requirements for software development 8

421 Software development methods 8

4.2.2 Standards for software products 8

4.2.3 Reusable software products 8

4.2.3.1 Incorporating reusable software products 8

4.2.3.2 Developing reusable software products 9

14.2.4] Handling of critical requirementsiuiii.... 9

4.2.4.1 Safety assurance 9

4.2.4.2 Security assuranCeot 9

4.2.4.3 Privacy assurance 9

4.2.4.4| Assurance of other critical requirements 9

4.2.5 Computer hardware resource utilization. 10

4.2.6 Recording rationale 10

4.2.7 AcCCeSS for acquIrer reVIEWot e 10

DETAILED REQUIREMENTS e 11
ﬂ Project planning and oversight 12
5.1.1 Software development planning 12

5.1.2 CSCltestplanning 12

5.1.3 Systemtestplanning 12

5.14 Software installation planning 12

5.1.5 Software transition planning o 12

5.1.6 Following and updating plans 13

IEI Establishing a software development environment 13
5.2.1 Software engineering environment 13

5.2.2 Software test environment 13

5.2.3 Software development library 13

5.4]

5.5
5.6

5.7]

5.8]

5.2.4 Software developmentfiles 13
5.2.5 Non-deliverable software 13
System requirements analysis 13
5.3.1 Analysis of userinput 14
5.3.2 Operational concept e 14
5.3.3 System reqUIremMENtS 14
SysStem desSigN 14
5.4.1 System-wide design decisions e 14
5.4.2 System architectural design 14
Software requirements analysis 15
Software design 15
5.6.1 CSCl-wide design decCiSionsot 15
5.6.2 CSCl architectural design 15
5.6.3 CSCl detailed design 15
Software implementation and unittesting 16
5.7.1 Software implementation 16
5.7.2 Preparing for unittesting 16
5.7.3 Performing unittesting 16
5.7.4 Revisionand retesting 16
5.7.5 Analyzing and recording unittestresults 16
Unit integration and testing 16
5.8.1 Preparing for unit integration and testing 17
5.8.2 Performing unit integration and testing 17
5.8.3 Revisionand retesting 17
5.84 Analyzing and recording unit integration and test results 17
CSCI qualification testingot 17
59.1 Independence in CSCI qualification testing 17
5.9.2 Testing on the target computer system 17
5.9.3 Preparing for CSCI qualification testing 17
594 Dry run of CSCI qualificationtesting 18
5.9.5 Performing CSCI qualification testing 18
5.9.6 Revisionand retesting 18
5.9.7 Analyzing and recording CSCI qualification test results 18
CSCI/HWCI integration and testingt 18
5.10.1| Preparing for CSCI/HWCI integration and testing 18
5.10.2| Performing CSCI/HWCI integration and testing 18
5.10.3] Revision and retesting 18
5.10.4| Analyzing and recording CSCI/HWCI integration and test results 19
System qualification testing 19
5.11.1| Independence in system qualification testing 19
5.11.2| Testing on the target computer system 19
5.11.3| Preparing for system qualification testing 19
5.11.4| Dry run of system qualificationtesting 19
5.11.5| Performing system qualificationtesting 19
5.11.6] Revision and retesting 19
5.11.7| Analyzing and recording system qualification test results 20

5.12| Preparing for software use 20

5.12.1| Preparing the executable software 20
5.12.2| Preparing version descriptions for user sites 20
5.12.3| Preparinguser manuals 20
5.12.3.1| Software usermanuals 20

5.12.3.2| Software input/output manuals 20

5.12.3.3| Software center operator manuals 21

5.12.3.4| Computer operationmanuals 21

5.12.4| Installation atusersites 21
Preparing for software transition, 21
5.13.1| Preparing the executable software 21
5.13.2| Preparing source files 21
5.13.3| Preparing version descriptions for the supportsite 21
5.13.4| Preparing the "as built" CSCI design and related information 21
5.13.5/ Updating the system design description 22
5.13.6] Preparing support manuals 22
5.13.6.1| Computer programming manuals 22

5.13.6.2| Firmware support manuals 22

5.13.7| Transition to the designated supportsite 22
Software configuration management 23
5.14.1| Configuration identification 23
5.14.2| Configuration control 23
5.14.3| Configuration status accounting 23
5.14.4| Configuration audits 23
5.14.5| Packaging, storage, handling, and delivery 23
Software product evaluation 24
5.15.1| In-process and final software product evaluations 24
5.15.2| Software product evaluationrecords 24
5.15.3| Independence in software product evaluation 24
|5.16| Software quality @SSUFANCEottt ettt 24
5.16.1| Software quality assurance evaluations 24
5.16.2| Software quality assurance records 24
5.16.3] Independence in software quality assurance 25
Corrective action e 25
5.17.1| Problem/change reports 25
5.17.2| Corrective action SyStem 25

5.18| Joint technical and management reviews, 25
5.18.1| Jointtechnical reviews 26
5.18.2| Joint management reVIEWSottt 26
Other aCtiVItIES oot e et e e e e e e e e 26
5.19.1] Risk management 26
5.19.2| Software managementindicators 27
5.19.3| Security and privacy 27
5.19.4| Subcontractor management 27
5.19.5| Interface with software IV&V agents 27
5.19.6| Coordination with associate developers 27
5.19.7] Improvement of project processes 27

NOTES ottt et e 28
6.1| Intended USe 28
6.2| Datarequirements 28
6.3| Relationship between standard and CDRL 29
6.4| Delivery of tool contents 29
6.5| Tailoring guidance 29
6.6| Cost/schedule reporting 29
6.7 | Related standardization documents 29
6.8| Subjectterm (key word) listing 29

APPENDIXES
Appendix Page
LIST OF ACRONYMSo\ttt 32
A.l SCOPE . o o e 32
A2 Applicable documents 32
A3 ACTONYMIS L .t e e 32
INTERPRETING MIL-STD-498 FOR INCORPORATION OF REUSABLE
SOFTWARE PRODUCTS e e e 33
B.1 SCOPE . o o e e 33
B.2 Applicable documents 33
B.3 Evaluating reusable software products 33
B.4 Interpreting MIL-STD-498 activities for reusable software
PrOodUCTES . . . ot 33
CATEGORY AND PRIORITY CLASSIFICATIONS FOR PROBLEM
REPORTING e e e e e 36
Cl1 SCOPE . . o 36
C.2 Applicable documents 36
C.3 Classification by category 36
c4 Classification by priority 36
@ SOFTWARE PRODUCT EVALUATIONS i 38
D.1 SO0 . . ot 38
D.2 Applicable documents 38
D.3 Required evaluations 38
D.4 Criteria definitions 38
CANDIDATE JOINT MANAGEMENT REVIEWS 44
E.1 SO0 . . ot 44
E.2 Applicable documents 44
E.3 ASSUMPLIONS . . . o 44
E.4 Candidate reviews oot 44

CANDIDATE MANAGEMENT INDICATORS e 46

F.1 SCOP . o o e e 46
F.2 Applicable documents 46
F.3 Candidate indicators 46

GUIDANCE ON PROGRAM STRATEGIES, TAILORING, AND BUILD

PLANNING . . . 47
G.1 SCOPE . o o e e 47
G.2 Applicable documents 47
G.3 Candidate program strategies 47
G.4 Selecting an appropriate program strategy 48
G.5 Relationship of MIL-STD-498 to program strategies 48
G.6 Planning software builds and tailoring MIL-STD-498 48
GUIDANCE ON ORDERING DELIVERABLES 56
H.1 SCOPE . . o 56
H.2 Applicable documents 56
H.3 Ordering deliverables 56
H.4 Scheduling deliverables 56
H.5 Format of deliverables 56
H.6 Tailoring the DIDS 56
CONVERSION GUIDE FROM DOD-STD-2167A AND DOD-STD-7935A 57
.1 SCOPE . o o e 57
1.2 Applicable documents e 57
1.3 Mapping of key terms 57
1.4 Mapping of DIDS 57

=

el
w

=

Tl
FEE E B EEEEEEE L

I

=
al

=
(o))

=

!.

Page
One possible mapping of MIL-STD-498 activities to multiple builds 11
Related standardization documents 30
Interpreting MIL-STD-498 for incorporation of reusable software 34
Categories to be used for classifying problems in software products 37
Priorities to be used for classifying problems 37
Software products and associated evaluation criteria 39
Key features of three DOD program strategies 47
Sample risk analysis for determining the appropriate program strategy 49
One possible way of applying MIL-STD-498 to the Grand Design

Program Strategy o vttt e e 50
One possible way of applying MIL-STD-498 to the Incremental

program strategy 51
One possible way of applying MIL-STD-498 to the Evolutionary

Program Strategyo vttt 52
One possible way of applying MIL-STD-498 to a reengineering project 53
Example of build planning for a MIL-STD-498 project 54
Mapping of key terms 57
Mapping of DOD-STD-7935A DIDs to MIL-STD-498 DIDs 58
Mapping of DOD-STD-2167A DIDs to MIL-STD-498 DIDs 59

Mapping of MIL-STD-498 DIDs to DOD-STD-2167A and
DOD-STD-7935A DIDS . . . o v o v oeeee e e e 60

MIL-STD-498 (PDF version) 1. Scope Page 1
1. SCOPE

11 Purpose. The purpose of this standard is to establish uniform requirements for software
development and documentation.

1.2 Application. MIL-STD-498 is intended to be applied as follows.

1.2.1 Organizations and agreements. This standard can be applied to contractors,
subcontractors, or Government in-house agencies performing software development. For
uniformity, the term "ééaﬂirér"‘ is used for the organization requiring the technical effort,
for the organization performing the technical effort, "contract" for the agreement
between these parties, "Statement of Work" (SOW) for the list of tasks to be performed by the
developer, "Contract Data Requirements List" (CDRL) for the list of deliverable software products,
and "subcontractor” for any organization tasked by the developer to perform part of the required
effort. ["Software development"’|is used as an inclusive term encompassing new development,

modification, reuse, reengineering, maintenance, and all other activities resulting in software
products.

1.2.2 Contract-specific application. This standard is invoked by citing it on a contract. It applies
to each software product and to each type of software covered by the contract, regardless of
storage medium, to the extent specified in the contract. Examples of types of software include
deliverable versus non-deliverable, software designed to meet user needs versus software in the
engineering and test environments, and software designed to meet one user need versus
software designed to meet another. The acquirer is expected to specify the types of software to
which the standard applies and to tailor the standard appropriately for each type of software. If
the standard is invoked without such a statement of selective application, it will be understood to
apply in its entirety to all deliverable software, with requirements concerning the software
development environment applicable to the software development environment for the deliverable
software. While this standard is written in terms of [Computer Software Configuration Items)|
(CSCils), it may be applied to software not designated as a CSCI, with the term "CSCI" interpreted
appropriately. Software installed in firmware is subject to all of the aforementioned provisions.
This standard does not apply to the hardware element of firmware.

1.2.3 Tailoring. This standard and its Data Item Descriptions (DIDs) are meant to be tailored
for each type of software to which they are applied. While tailoring is the responsibility of the
acquirer, suggested tailoring may be provided by prospective and selected developers. General
tailoring guidance can be found in Section|6 and in DOD-HDBK-248. Tailoring guidance specific
to this standard can be found in Appendixes G and|H and in guidebooks and handbooks planned
for this standard.

1.2.4 Interpretation of selected terms. The following terms have a special interpretation as used
in this standard.

1.24.1 Interpretation of "system". The following interpretations apply:

a. The term "system," as used in this standard, may mean: (1) a hardware-software system
(for example, a radar system) for which this standard covers only the software portion, or
(2) a software system (for example, a payroll system) for which this standard governs
overall development.

MIL-STD-498 (PDF version) 1. Scope Page 2

b. If a system consists of subsystems, all requirements in this standard concerning systems
apply to the subsystems as well. If a contract is based on alternatives to systems and
subsystems, such as complex items, the requirements in this standard concerning the
system and its specification apply to these alternatives and their specifications.

1.2.4.2 Interpretation of "participate” in _system development. The term "participate" in
paragraphs regarding system-level activities is to be interpreted as follows: If the software
covered by this standard is part of a hardware-software system for which this standard covers
only the software portion, the term "participate” is to be interpreted as "take part in, as described
in the software development plan." If the software (possibly with its computers) is considered to
constitute a system, the term "participate” is to be interpreted as "be responsible for."

1.2.4.3 Interpretation of "develop," "define," etc. Throughout this standard, requirements to
"develop," "define," "establish,” or "identify" information are to be interpreted to include new
development, modification, reuse, reengineering, maintenance, or any other activity or
combination of activities resulting in software products.

1.2.4.4 Interpretation _of "record". Throughout this standard, requirements to "record"
information are to be interpreted to mean "set down in a manner that can be retrieved and
viewed." The result may take many forms, including, but not limited to, hand-written notes, hard-
copy or electronic documents, and data recorded in computer-aided software engineering (CASE)
and project management tools.

1.3 Order of precedence. In the event of conflict between the requirements of this standard
and other applicable standardization documents, the acquirer is responsible for resolving the
conflicts.

MIL-STD-498 (PDF version) 2. Referenced Documents Page 3
2. REFERENCED DOCUMENTS

This section does not apply to this standard, since no documents are referenced in Sections 3,
4, or 5. Section|6l contains a list of standardization documents that may be used with this

standard.

MIL-STD-498 (PDF version) 3. Definitions Page 4
3. DEFINITIONS

Note: In addition to the definitions provided here, Section 1 describes MIL-STD-498's
interpretation _or special usage of the following terms: |acquirer, contract, Contract Data
Requirements List| define, develop]developer]establish, identify | participate record | software
development, Statement of Work, subcontractor,| subsystem,| and|system.|

3.1 | Acceptance. An action by an authorized representative of the acquirer by which the
acquirer assumes ownership of software products as partial or complete performance of a
contract.

3.2 Acquirer. An organization that procures software products for itself or another
organization.

3.3 Approval. Written notification by an authorized representative of the acquirer that a
developer’s plans, design, or other aspects of the project appear to be sound and can be used
as the basis for further work. Such approval does not shift responsibility from the developer to
meet contractual requirements.

3.4 Architecture. The organizational structure of a system or CSClI, identifying its components,
their interfaces, and a concept of execution among them.

3.5 | Associate developer. An organization that is neither prime contractor nor subcontractor
to the developer, but who has a development role on the same or related system or project.

3.6 Behavioral design. The design of how an overall system or CSCI will behave, from a
user’s point of view, in meeting its [requirements] ignoring the internal implementation of the
system or CSCI. This design contrasts with architectural design, which identifies the internal
components of the system or CSCI, and with the detailed design of those components.

Build. (1) A version of software that meets a specified subset of the requirements that the
completed software will meet. (2) The period of time during which such a version is developed.
Note: The relationship of the terms "build" and "version" is up to the developer; for example, it
may take several versions to reach a build, a build may be released in several parallel versions
(such as to different sites), or the terms may be used as synonyms.

3.8 Computer database. See|database!

3.9 Computer hardware. Devices capable of accepting and storing computer data, executing
a systematic sequence of operations on computer data, or producing control outputs. Such
devices can perform substantial interpretation, computation, communication, control, or other
logical functions.

3.10|] Computer program. A combination of computer instructions and data definitions that
enable computer hardware to perform computational or control functions.

3.11 Computer software. See[software.|

MIL-STD-498 (PDF version) 3. Definitions Page 5

3.12| Computer Software Configuration Item (CSCI). An aggregation ofthat satisfies
an end use function and is designated for separate configuration management by the acquirer.
CSCils are selected based on tradeoffs among software function, size, host or target computers,
developer, [support concept,| plans for reuse, criticality, interface considerations, need to be
separately documented and controlled, and other factors.

3.13 Configuration Item. An aggregation of hardware, software, or both that satisfies an end
use function and is designated for separate configuration management by the acquirer.

3.14| Database. A collection of related data stored in one or more computerized files in a
manner that can be accessed by users or computer programs via a database management
system.

3.15 Database management system. An integrated set of computer programs that provide the
capabilities needed to establish, modify, make available, and maintain the integrity of a database.

3.16| Deliverable software product. A|software product|that is required by the contract to be
delivered to the acquirer or other designated recipient.

3.17| Design. Those characteristics of a system or CSCI that are selected by the developer in
response to the[requirements] Some will match the requirements; others will be elaborations of
requirements, such as definitions of all error messages in response to a requirement to display
error messages; others will be implementation related, such as decisions about what software
units and logic to use to satisfy the requirements.

3.18| Developer. An organization that develops|software products|("develops" may include new
development, modification, reuse, reengineering, maintenance, or any other activity that results
in software products). The developer may be a contractor or a Government agency.

3.19] Document/documentation. A collection of data, regardless of the medium on which it is
recorded, that generally has permanence and can be read by humans or machines.

3.20| Evaluation. The process of determining whether an item or activity meets specified
criteria.

3.21| Firmware. The combination of a hardware device and computer instructions and/or
computer data that reside as read-only software on the hardware device.

3.22| Hardware Configuration Item (HWCI). An aggregation of hardware that satisfies an end
use function and is designated for separate configuration management by the acquirer.

3.23| Independent verification and validation (IV&YV). Systematic evaluation of software products
and activities by an agency that is not responsible for developing the product or performing the
activity being evaluated. V&V is not within the scope of this standard.

3.24| Interface. In software development, a relationship among two or more entities (such as
CSCI-CSCI, CSCI-HWCI, CSCl-user, or software unit-software unit) in which the entities share,
provide, or exchange data. An interface is not a CSCI, software unit, or other system component;
it is a relationship among them.

MIL-STD-498 (PDF version) 3. Definitions Page 6

3.25| Joint review. A process or meeting involving representatives of both the acquirer and the
developer, during which project status, software products, and/or project issues are examined and
discussed.

3.26] Non-deliverable software product. Alsoftware product|that is not required by the contract
to be delivered to the acquirer or other designated recipient.

3.27 Process. An organized set of activities performed for a given purpose; for example, the
software development process.

3.28| Qualification testing. Testing performed to demonstrate to the acquirer that a CSCI or a
system meets its specified

3.29] Reengineering. The process of examining and altering an existing system to reconstitute
it in a new form. May include reverse engineering (analyzing a system and producing a
representation at a higher level of abstraction, such as design from code), restructuring
(transforming a system from one representation to another at the same level of abstraction),
redocumentation (analyzing a system and producing user or support documentation), forward
engineering (using software products derived from an existing system, together with new
requirements, to produce a new system), retargeting (transforming a system to install it on a
different target system), and translation (transforming source code from one language to another
or from one version of a language to another).

3.30] Requirement. (1) A characteristic that a system or CSCI must possess in order to be
acceptable| to the acquirer. (2) A mandatory statement in this standard or another portion of the
contract.

3.31| Reusable software product. Alsoftware productldeveloped for one use but having other
uses, or one developed specifically to be usable on multiple projects or in multiple roles on one
project. Examples include, but are not limited to, commercial off-the-shelf software products,
acquirer-furnished software products, software products in reuse libraries, and pre-existing
developer software products. Each use may include all or part of the software product and may
involve its modification. This term can be applied to any software product (for example,
requirements, architectures, etc.), not just to software itself.

3.32] Software. |Computer programs|andcomputer databases/ Note: Although some definitions
of software include documentation, MIL-STD-498 limits the definition to computer programs and
computer databases in accordance with Defense Federal Acquisition Regulation Supplement
227.401.

3.33| Software development. A set of activities that results in|software products| Software
development may include new development, modification, reuse, reengineering, maintenance, or
any other activities that result in software products.

3.34| Software development file (SDF). A repository for material pertinent to the development
of a particular body of software. Contents typically include (either directly or by reference)
considerations, rationale, and constraints related to requirements analysis, design, and
implementation; developer-internal test information; and schedule and status information.

MIL-STD-498 (PDF version) 3. Definitions Page 7

3.35| Software development library (SDL). A controlled collection of software, documentation,
other intermediate and final software products, and associated tools and procedures used to
facilitate the orderly development and subsequent support of software.

3.36] Software development process. An organized set of activities performed to translate user
needs into| software products.|

3.37 Software engineering. In general usage, a synonym for software development. As used
in this standard, a subset of software development consisting of all activities except qualification
testing. The standard makes this distinction for the sole purpose of giving separate names to the
software engineering and software test environments.

Software engineering environment. The facilities, hardware, software, firmware,
procedures, and documentation needed to perform software engineering. Elements may include
but are not limited to computer-aided software engineering (CASE) tools, compilers, assemblers,
linkers, loaders, operating systems, debuggers, simulators, emulators, documentation tools, and
database management systems.

3.39] Software product. Software or associated information created, modified, or incorporated
to satisfy a contract. Examples include plans, requirements, design, code, databases, test
information, and manuals.

3.40| Software quality. The ability of software to satisfy its specified|requirements]

3.41| Software support. The set of activities that takes place to ensure that software installed
for operational use continues to perform as intended and fulfill its intended role in system
operation. Software support includes software maintenance, aid to users, and related activities.

3.42| Software system. A system consisting solely of software and possibly the computer
equipment on which the software operates.

3.43| Software test environment. The facilities, hardware, software, firmware, procedures, and
documentation needed to perform qualification, and possibly other, testing of software. Elements
may include but are not limited to simulators, code analyzers, test case generators, and path
analyzers, and may also include elements used in the software engineering environment.

3.44| Software transition. The set of activities that enables responsibility for software
development to pass from one organization, usually the organization that performs initial software
development, to another, usually the organization that will perform[software support!

3.45| Software unit. An element in the|design of a|CSCI; for example, a major subdivision of
a CSCI, a component of that subdivision, a class, object, module, function, routine, or database.
Software units may occur at different levels of a hierarchy and may consist of other software
units. Software units in the design may or may not have a one-to-one relationship with the code
and data entities (routines, procedures, databases, data files, etc.) that implement them or with
the computer files containing those entities.

3.46 Support (of software). See software support.

3.47 Transition (of software). See software transition.

3.48 Definitions of acronyms used in this standard. See Appendix|Al

MIL-STD-498 (PDF version) 4. General Requirements Page 8

4. GENERAL REQUIREMENTS

| 4.1) | Software development process| The developer shall establish a software development
process consistent with contract requirements. The software development process shall include
the following major activities, which may overlap, may be applied iteratively, may be applied
differently to different elements of software, and need not be performed in the order listed below.
Appendix |G provides examples. The developer's software development process shall be
described in the software development plan.

Project planning and oversight (section|5.1)
Establishing a software development environment|(5.2)
System requirements analysis |(5.3]
System design |(5.4)
Software requirements analysis |(5.5)
Software design|(5.6)
Software implementation and unit testing (5.7)
Unit integration and testing |(5.8)
CSCI qualification testing (5.9]
CSCI/HWCI integration and testing|(5.10)
System qualification testing{(5.11)
Preparing for software use [(5.12]
. Preparing for software transition (5.13]
Integral processes:
1) Software configuration management|(5.14)
2) Software product evaluation|(5.15)
3) Software quality assurance|(5.16)
4) Corrective action|(5.17)
5) Joint technical and management reviews (5.18)
6) Other activities|(5.19)

S3TATTSQ@T o0 o

| 4.2 | General requirements for|software development| The developer shall meet the following
general requirements in carrying out the detailed requirements in section|5/of this standard.

| 4.2.1| Software development methods. The developer shall use systematic, documented
methods for all software development activities. These methods shall be described in, or
referenced from, the software development plan.

| 4.2.2| Standards for|software products| The developer shall develop and apply standards for
representing requirements, design, code, test cases, test procedures, and test results. These
standards shall be described in, or referenced from, the software development plan.

| 4.2.3 | |Reusab|e software products] The developer shall meet the following requirements.

| 4.2.3.1| Incorporating reusable software products. The developer shall identify and evaluate
reusable software products for use in fulfilling the requirements of the contract. The scope of the
search and the criteria to be used for evaluation shall be as described in the software
development plan. Reusable software products that meet the criteria shall be used where
practical. Appendix|B! provides required and candidate criteria and interprets this standard for
incorporation of reusable software products. Incorporated software products shall meet the data
rights requirements in the contract.

MIL-STD-498 (PDF version) 4. General Requirements Page 9

| 4.2.3.2| Developing reusable software products. During the course of the contract, the
developer shall identify opportunities for developing software products for reuse and shall evaluate
the benefits and costs of these opportunities. Opportunities that provide cost benefits and are
compatible with program objectives shall be identified to the acquirer.

Note: In addition, the developer may be required by the contract to develop software products
specifically for reuse.

| 4.2.4| Handling of critical requirements. The developer shall meet the following requirements.

4241 Safety assurance. The developer shall identify as safety-critical those CSClIs or
portions thereof whose failure could lead to a hazardous system state (one that could result in
unintended death, injury, loss of property, or environmental harm). If there is such software, the
developer shall develop a safety assurance strategy, including both tests and analyses, to assure
that the requirements, design, implementation, and operating procedures for the identified
software minimize or eliminate the potential for hazardous conditions. The strategy shall include
a software safety program, which shall be integrated with the system safety program if one exists.
The developer shall record the strategy in the software development plan, implement the strategy,
and produce evidence, as part of required software products, that the safety assurance strategy
has been carried out.

4242 Security assurance. The developer shall identify as security-critical those CSCls or
portions thereof whose failure could lead to a breach of system security. If there is such software,
the developer shall develop a security assurance strategy to assure that the requirements, design,
implementation, and operating procedures for the identified software minimize or eliminate the
potential for breaches of system security. The developer shall record the strategy in the software
development plan, implement the strategy, and produce evidence, as part of required software
products, that the security assurance strategy has been carried out.

42.4.3 Privacy assurance. The developer shall identify as privacy-critical those CSCls or
portions thereof whose failure could lead to a breach of system privacy. If there is such software,
the developer shall develop a privacy assurance strategy to assure that the requirements, design,
implementation, and operating procedures for the identified software minimize or eliminate the
potential for breaches of system privacy. The developer shall record the strategy in the software
development plan, implement the strategy, and produce evidence, as part of required software
products, that the privacy assurance strategy has been carried out.

4.2.4.4 Assurance of other critical requirements. If a system relies on software to satisfy other
requirements deemed critical by the contract or by system specifications, the developer shall
identify those CSCls or portions thereof whose failure could lead to violation of those critical
requirements; develop a strategy to assure that the requirements, design, implementation, and
operating procedures for the identified software minimize or eliminate the potential for such
violations; record the strategy in the software development plan; implement the strategy; and
produce evidence, as part of required software products, that the assurance strategy has been
carried out.

MIL-STD-498 (PDF version) 4. General Requirements Page 10

| 4.2.5| Computer hardware resource utilization. The developer shall analyze contract require-
ments concerning computer hardware resource utilization (such as maximum allowable use of
processor capacity, memory capacity, input/output device capacity, auxiliary storage device
capacity, and communications/network equipment capacity). The developer shall allocate
computer hardware resources among the CSCIs, monitor the utilization of these resources for the
duration of the contract, and reallocate or identify the need for additional resources as necessary
to meet contract requirements.

| 4.2.6| Recording rationale. The developer shall record rationale that will be useful to the support
agency for key decisions made in specifying, designing, implementing, and testing the software.
The rationale shall include trade-offs considered, analysis methods, and criteria used to make the
decisions. The rationale shall be recorded in documents, code comments, or other media that
will transition to the support agency. The meaning of "key decisions" and the approach for
providing the rationale shall be described in the software development plan.

Access for acquirer review. The developer shall provide the acquirer or its authorized
representative access to developer and subcontractor facilities, including the software engineering
and test environments, for review of software products and activities required by the contract.

MIL-STD-498 (PDF version) 5. Detailed Requirements Page 11
5. DETAILED REQUIREMENTS

The order of the requirements in this section is not intended to specify the order in which they
must be carried out. Many of the activities may be ongoing at one time; different software
products may proceed at different paces; and activities specified in early subsections may depend
on input from activities in later subsections. If the software is developed in multiple builds, some
activities may be performed in every build, others may be performed only in selected builds, and
activities and software products may not be complete until several or all builds are accomplished.
Figure|ll provides an example of how each activity may be applied in one or more builds. Non-
mandatory notes throughout section 5 tell how to interpret each activity on a project involving
multiple builds. A project involving a single build will accomplish all required activities in that
build. Appendix|G! provides guidance for planning builds, determining which activities apply to
each build, and scheduling these activities.

Builds
Activity Build 1 | Build2 | Build3 | Build 4

5.1 Project planning and oversight X X X X
5.2 Establishing a software development environment X X X X
5.3 System requirements analysis X X
5.4 System design X X X
5.5 Software requirements analysis X X X X
5.6 Software design X X X X
5.7 Software implementation and unit testing X X X X
5.8 Unit integration and testing X X X X
5.9 CSCI qualification testing X X X
5.10 CSCI/HWCI integration and testing X X X
5.11 System qualification testing X X
5.12 Preparing for software use X X X X
5.13 Preparing for software transition X
Integral processes:

5.14 Software configuration management X X X X

5.15 Software product evaluation X X X X

5.16 Software quality assurance X X X X

5.17 Corrective action X X X X

5.18 Joint technical and management reviews X X X X

5.19 Other activities X X X X

FIGURE 1. One possible mapping of MIL-STD-498 activities to multiple builds.

MIL-STD-498 (PDF version) 5. Detailed Requirements Page 12

5.1| Project planning and oversight. The developer shall perform project planning and

oversight in accordance with the following requirements.

Note: If a system or CSCI is developed in multiple builds, planning for each build should be
interpreted to include: a) overall planning for the contract, b) detailed planning for the current
build, and c¢) planning for future builds covered under the contract to a level of detalil
compatible with the information available.

5.1.1 |Software development|planning. The developer shall develop and record plans for
conducting the activities required by this standard and by other software-related requirements in
the contract. This planning shall be consistent with system-level planning and shall include all
applicable items in the Software Development PIanDID (seel6.2).

Note 1. The wording here and throughout MIL-STD-498 is designed to: 1) Emphasize that
the development and recording of planning and engineering information is an intrinsic part of
the software development process, to be performed regardless of whether a deliverable is
required; 2) Use the DID as a checklist of items to be covered in the planning or engineering
activity; and 3) Permit representations other than traditional documents for recording the
information (e.g., computer-aided software engineering (CASE) tools).

Note 2: If the CDRL specifies delivery of the information generated by this or any other
paragraph, the developer is required to format, assemble, mark, copy, and distribute the
deliverable in accordance with the CDRL. This task is recognized to be separate from the
task of generating and recording the required information and to require additional time and
effort on the part of the developer.

Note 3: The software development plan covers all activities required by this standard.
Portions of the plan may be bound or maintained separately if this approach enhances the
usability of the information. Examples include separate plans for software quality assurance
and software configuration management.

5.1.2 CSCI test planning. The developer shall develop and record plans for conducting CSCI
gualification testing. This planning shall include all applicable items in the Software Test Plan
(STP)|DID (see|6.2).

5.1.3 System test planning. The developer shall participate in developing and recording plans
for conducting system qualification testing. For software systems, this planning shall include all
applicable items in the Software Test Plan iSTPEI DID (see|6.2). (The intent for software systems
is a single software test plan covering both CSCI and system qualification testing.)

5.1.4 Software installation planning. The developer shall develop and record plans for
performing software [installation| and [training| at the user sites specified in the contract. This
planning shall include all applicable items in the Software Installation Plan[(SIP) DID (see|6.2).

5.1.5 Software transition planning. The developer shall identify all software development
[resourceg that will be needed by the support agency to fulfill the[support concept|specified in the
contract. The developer shall develop and record plans identifying these resources and
describing the approach to be followed for[transitioning| deliverable items to the support agency.
This planning shall include all applicable items in the Software Transition Plan DID (see
6.2)

MIL-STD-498 (PDF version) 5. Detailed Requirements Page 13

5.1.6 Following and updating plans. Following acquirer of any of the plans in this
section, the developer shall conduct the relevant activities in accordance with the plan. The
developer’'s management shall review the software development process at intervals specified in
the software development plan to assure that the process complies with the contract and adheres
to the plans. With the exception of developer-internal scheduling and related staffing information,
updates to plans shall be subject to acquirer| approvall

| 5.2| Establishing a software development environment. The developer shall establish a
software development environment in accordance with the following requirements.

Note: If a system or CSCI is developed in multiple builds, establishing the software
development environment in each build should be interpreted to mean establishing the
environment needed to complete that build.

5.2.1 |Software engineering environment, The developer shall establish, control, and maintain
a software engineering environment to perform the software engineering effort. The developer
shall ensure that each element of the environment performs its intended functions.

5.2.2 | Software test environment, The developer shall establish, control, and maintain a software
test environment to perform qualification, and possibly other, testing of software. The developer
shall ensure that each element of the environment performs its intended functions.

5.2.3 |Software development library! The developer shall establish, control, and maintain a
software development library (SDL) to facilitate the orderly development and subsequent support
of software. The SDL may be an integral part of the software engineering and test environments.
The developer shall maintain the SDL for the duration of the contract.

5.2.4 |Software development files| The developer shall establish, control, and maintain a
software development file (SDF) for each software unit or logically related group of software units,
for each CSCI, and, as applicable, for logical groups of CSCls, for subsystems, and for the overall
system. The developer shall record information about the development of the software in
appropriate SDFs and shall maintain the SDFs for the duration of the contract.

5.2.5 | Non-deliverable software| The developer may use non-deliverable software in the
development of deliverable software as long as the operation and support of the deliverable
software after delivery to the acquirer do not depend on the non-deliverable software or provision
is made to ensure that the acquirer has or can obtain the same software. The developer shall
ensure that all non-deliverable software used on the project performs its intended functions.

| 5.3| System requirements analysis. The developer shall participate in system requirements
analysis in accordance with the following requirements.

Note: If a system is developed in multiple builds, its requirements may not be fully defined
until the final build. The developer's planning should identify the subset of system
requirements to be defined in each build and the subset to be implemented in each build.
System requirements analysis for a given build should be interpreted to mean defining the
system requirements so identified for that build.

MIL-STD-498 (PDF version) 5. Detailed Requirements Page 14

5.3.1 Analysis of user input. The developer shall participate in analyzing user input provided
by the acquirer to gain an understanding of user needs. This input may take the form of need
statements, surveys, problem/change reports, feedback on prototypes, interviews, or other user
input or feedback.

5.3.2 | Operational concept.| The developer shall participate in defining and recording the
operational concept for the system. The result shall include all applicable items in the Operational
Concept Description (OCD) DID (seel6.2].

5.3.3 |§¥§;gmlreguirements| The developer shall participate in defining and recording the
requirements to be met by the system and the methods to be used to ensure that each

requirement The result shall include all applicable items in the System/Subsystem
Specification (SSS) DID (see|6.2). Depending on CDRL provisions, requirements concerning
system interfaces may be included in the| SSS|or in interface requirements specifications|(IRSs

Note: If a system consists of subsystems, the activity in 5.3.3 is intended to be performed
iteratively with the activities in 5.4 (System design) to define system requirements, design the
system and identify its subsystems, define the requirements for those subsystems, design the
subsystems and identify their components, and so on.

| 5.4| System|design.| The developer shall participate in system design in accordance with the
following requirements.

Note: If a system is developed in multiple builds, its design may not be fully defined until the
final build. The developer’s planning should identify the portion of the system design to be
defined in each build. System design for a given build should be interpreted to mean defining
the portion of the system design identified for that build.

54.1 mw‘] The developer shall participate in defining and recording

system-wide design decisions (that is, decisions about the system’s behavioral design and other
decisions affecting the selection and design of system components). The result shall include all
applicable items in the system-wide design section of the System/Subsystem Design Description
(SSDD) DID (seel6.2). Depending on CDRL provisions, design pertaining to may be
included in the SSDD or in interface design descriptions and design pertaining to
databases may be included in the SSDD or in database design descriptions|§DBDDs§

Note: Design decisions remain at the discretion of the developer unless formally converted
to requirements through contractual processes. The developer is responsible for fulfilling all
requirements and demonstrating this fulfillment through qualification testing (see|5.9//5.11).
Design decisions act as developer-internal "requirements," to be implemented, imposed on
subcontractors, if applicable, and confirmed by developer-internal testing, but their fulfillment
need not be demonstrated to the acquirer.

architectural design of the system (identifying the [components|of the system, theirinterfaces] and
a concept of{execution|among them) and the| traceability| between the system components and
system requirements. The result shall include all applicable items in the architectural design and
traceability sections of the System/Subsystem Design Description (SSDD) DID (see [6.2).
Depending on CDRL provisions, design pertaining to interfaces may be included in the SSDD or
in interface design descriptions

5.4.2 |System architectural design.| The developer shall participate in defining and recording the
o

MIL-STD-498 (PDF version) 5. Detailed Requirements Page 15

[Software|requirements| analysis. The developer shall define and record the software

requirements to be met by each CSCI, the methods to be used to ensure that each requirement
and the[traceability] between the CSCI requirements and system requirements.
The result shall include all applicable items in the Software Requirements Specification (SRS) DID
(seel6.2). Depending on CDRL provisions, requirements concerning CSCI interfaces may be
included in or in interface requirements specifications

Note: If a CSCIl is developed in multiple builds, its requirements may not be fully defined until
the final build. The developer's planning should identify the subset of each CSCl's
requirements to be defined in each build and the subset to be implemented in each build.
Software requirements analysis for a given build should be interpreted to mean defining the
CSCI requirements so identified for that build.

5.6 Software desiqn] The developer shall perform software design in accordance with the
following requirements.

Note: If a CSCI is developed in multiple builds, its design may not be fully defined until the
final build. Software design in each build should be interpreted to mean the design necessary
to meet the CSCI requirements to be implemented in that build.

5.6.1 |CSCI-wide desian decisions] The developer shall define and record CSCI-wide design
decisions (that is, decisions about the CSCI’s behavioral design and other decisions affecting the

selection and design of the software units comprising the CSCI). The result shall include all
applicable items in the CSCI-wide design section of the Software Design Description (SDD) DID
(seel6.2). Depending on CDRL provisions, design pertaining to[interfaces|may be included in
SDDs or in interface design descriptions|(IDDs and design pertaining to databases may be
included in SDDs or in database design descriptions|(DBDDs)|

5.6.2 |CSCI architectural desian.| The developer shall define and record the|architectural| design

of each CSCI (identifying the[software units|comprising the CSCI, theirfinterfaces] and a concept
of [execution] among them) and the [traceability] between the software units and the CSCI
requirements. The result shall include all applicable items in the architectural design and
traceability sections of the Software Design Description (SDD) DID (see|6.2). Depending on
CDRL provisions, design pertaining to interfaces may be included in SDDs or in interface design

descriptions|(IDDs)

Note: Software units may be made up of other software units and may be organized into as
many levels as are needed to represent the CSCI architecture. For example, a CSCI may
be divided into three software units, each of which is divided into additional software units,
and so on.

5.6.3 |CSCI detailed desiqn.| The developer shall develop and record a of each
software unit. The result shall include all applicable items in the detailed design section of the
Software Design Description (SDD) DID (see|6.2)] Depending on CDRL provisions, design
pertaining to may be included in SDDs or in interface design descriptions[(IDDs)|and
design of software units that are databases or that access or manipulate databases may be
included in SDDs or in database design descriptions[(DBDDs)]

MIL-STD-498 (PDF version) 5. Detailed Requirements Page 16

|5.7| Software implementation and unit testing. The developer shall perform software
implementation and unit testing in accordance with the following requirements.

Note: The term "software" includes both computer programs and computer databases. The
term "implementation” means converting software design into computer programs and
computer databases. If a CSCl is developed in multiple builds, software implementation and
unit testing of that CSCI will not be completed until the final build. Software implementation
and unit testing in each build should be interpreted to include those units, or parts of units,
needed to meet the CSCI requirements to be implemented in that build.

5.7.1 Software implementation. The developer shall develop and record software corresponding
to each software unit in the CSCI design. This activity shall include, as applicable, coding
computer instructions and data definitions, building databases, populating databases and other
data files with data values, and other activities needed to implement the design. For deliverable
software, the developer shall obtain acquirer| approval| to use any programming language not
specified in the contract.

Note: Software units in the design may or may not have a one-to-one relationship with the
code and data entities (routines, procedures, databases, data files, etc.) that implement them
or with the computer files containing those entities.

5.7.2 Preparing for unit testing. The developer shall establish test cases (in terms of inputs,
expected results, and evaluation criteria), test procedures, and test data for testing the software
corresponding to each software unit. The test cases shall cover all aspects of the unit’s detailed
design. The developer shall record this information in the appropriate software development files
(SDFs).

5.7.3 Performing unit testing. The developer shall test the software corresponding to each
software unit. The testing shall be in accordance with the unit test cases and procedures.

5.7.4 Revision and retesting. The developer shall make all necessary revisions to the software,
perform all necessary retesting, and update the software development files (SDFs) and other
software products as needed, based on the results of unit testing.

5.7.5 Analyzing and recording unit test results. The developer shall analyze the results of unit
testing and shall record the test and analysis results in appropriate software development files
(SDFs).

| 5.8| Unit integration and testing. The developer shall perform unit integration and testing in
accordance with the following requirements.

Note 1. Unit integration and testing means integrating the software corresponding to two or
more software units, testing the resulting software to ensure that it works together as
intended, and continuing this process until all software in each CSCl is integrated and tested.
The last stage of this testing is developer-internal CSCI testing. Since units may consist of
other units, some unit integration and testing may take place during unit testing. The
requirements in this section are not meant to duplicate those activities.

Note 2: If a CSCl is developed in multiple builds, unit integration and testing of that CSCI will
not be completed until the final build. Unit integration and testing in each build should be
interpreted to mean integrating software developed in the current build with other software
developed in that and previous builds, and testing the results.

MIL-STD-498 (PDF version) 5. Detailed Requirements Page 17

5.8.1 Preparing for unit integration and testing. The developer shall establish test cases (in
terms of inputs, expected results, and evaluation criteria), test procedures, and test data for
conducting unit integration and testing. The test cases shall cover all aspects of the CSCl-wide
and CSCI architectural design. The developer shall record this information in the appropriate
software development files (SDFs).

5.8.2 Performing unit integration and testing. The developer shall perform unit integration and
testing. The testing shall be in accordance with the unit integration test cases and procedures.

5.8.3 Revision and retesting. The developer shall make all necessary revisions to the software,
perform all necessary retesting, and update the software development files (SDFs) and other
software products as needed, based on the results of unit integration and testing.

5.8.4 Analyzing and recording unit integration and test results. The developer shall analyze the
results of unit integration and testing and shall record the test and analysis results in appropriate
software development files (SDFs).

[5.9] [CSCiJqualification testing] The developer shall perform CSCI qualification testing in
accordance with the following requirements.

Note 1. CSCI qualification testing is performed to demonstrate to the acquirer that CSCI
requirements have been met. It covers the CSCI requirements in software requirements
specifications and in associated interface requirements specifications This
testing contrasts with developer-internal CSCI testing, performed as the final stage of unit
integration and testing.

Note 2: If a CSCI is developed in multiple builds, its CSCI qualification testing will not be
completed until the final build for that CSCI, or possibly until later builds involving items with
which the CSCI is required to interface. CSCI qualification testing in each build should be
interpreted to mean planning and performing tests of the current build of each CSCI to ensure
that the CSCI requirements to be implemented in that build have been met.

5.9.1 Independence in CSCI qualification testing. The person(s) responsible for qualification
testing of a given CSCI shall not be the persons who performed detailed design or implementation
of that CSCI. This does not preclude persons who performed detailed design or implementation
of the CSCI from contributing to the process, for example, by contributing test cases that rely on
knowledge of the CSCI’s internal implementation.

5.9.2 Testing on the target computer system. CSCI gualification testing shall include testing on
the target computer system or an alternative system by the acquirer.

5.9.3 Preparing for CSCI gualification testing. The developer shall define and record the test

|preparations] test|cases, and test|procedures|to be used for CSCI qualification testing and the
traceability| between the test cases and the CSCI reiuirements. The result shall include all

'applicable items in the Software Test Description|(STD)| DID (see|6.2). The developer shall

prepare the|test data|needed to carry out the test cases and provide the acquirer advance notice

of the|time and location| of CSCI qualification testing.

MIL-STD-498 (PDF version) 5. Detailed Requirements Page 18

5.9.4 Dry run of CSCI qualification testing. If CSCI qualification testing is to be witnessed by
the acquirer, the developer shall dry run the CSCI test cases and procedures to ensure that they
are complete and accurate and that the software is ready for withessed testing. The developer
shall record the results of this activity in appropriate software development files (SDFs) and shall
update the CSCI test cases and procedures as appropriate.

5.9.5 Performing CSCI qualification testing. The developer shall perform CSCI qualification
testing of each CSCI. The testing shall be in accordance with the CSCI test cases and
procedures.

5.9.6 Revision and retesting. The developer shall make necessary revisions to the software,
provide the acquirer advance notice of retesting, conduct all necessary retesting, and update the
software development files (SDFs) and other software products as needed, based on the results
of CSCI qualification testing.

5.9.7 Analyzing and recording CSCI gqualification test results. The developer shall analyze and
record the results of CSCI_qualification testing. The results shall include all applicable items in
the Software Test Report DID (see|6.2).

5.10| CSCI/HWCI integration and testing. The developer shall participate in CSCI/HWCI
integration and testing activities in accordance with the following requirements.

Note 1: CSCI/HWCI integration and testing means integrating CSCls with interfacing HWCls
and CSCls, testing the resulting groupings to determine whether they work together as
intended, and continuing this process until all CSCIs and HWCls in the system are integrated
and tested. The last stage of this testing is developer-internal system testing.

Note 2: If a system or CSCI is developed in multiple builds, CSCI/HWCI integration and
testing may not be complete until the final build. CSCI/HWCI integration and testing in each
build should be interpreted to mean integrating the current build of each CSCI with the current
build of other CSCIs and HWCIs and testing the results to ensure that the system
requirements to be implemented in that build have been met.

5.10.1 Preparing for CSCI/HWCI integration and testing. The developer shall participate in
developing and recording test cases (in terms of inputs, expected results, and evaluation criteria),
test procedures, and test data for conducting CSCI/HWCI integration and testing. The test cases
shall cover all aspects of the system-wide and system architectural design. The developer shall
record software-related information in appropriate software development files (SDFs).

5.10.2 Performing CSCI/HWCI integration and testing. The developer shall participate in
CSCI/HWCI integration and testing. The testing shall be in accordance with the CSCI/HWCI
integration test cases and procedures.

5.10.3 Revision and retesting. The developer shall make necessary revisions to the software,
participate in all necessary retesting, and update the appropriate software development files
(SDFs) and other software products as needed, based on the results of CSCI/HWCI integration
and testing.

MIL-STD-498 (PDF version) 5. Detailed Requirements Page 19

5.10.4 Analyzing and recording CSCI/HWCI integration and test results. The developer shall
participate in analyzing the results of CSCI/HWCI integration and testing. Software-related
analysis and test results shall be recorded in appropriate software development files (SDFs).

| 5.11| |System|qualification testing.| The developer shall participate in system qualification testing
in accordance with the following requirements.

Note 1: System qualification testing is performed to demonstrate to the acquirer that system
requirements have been met. It covers the system requirements in the system/subsystem
specifications[(SSSs) and in associated interface requirements specifications[(IRSs)] This
testing contrasts with developer-internal system testing, performed as the final stage of
CSCI/HWCI integration and testing.

Note 2: If a system is developed in multiple builds, qualification testing of the completed
system will not occur until the final build. System qualification testing in each build should be
interpreted to mean planning and performing tests of the current build of the system to ensure
that the system requirements to be implemented in that build have been met.

5.11.1 Independence in system qualification testing. The person(s) responsible for fulfilling the
requirements in this section shall not be the persons who performed detailed design or
implementation of software in the system. This does not preclude persons who performed
detailed design or implementation of software in the system from contributing to the process, for
example, by contributing test cases that rely on knowledge of the system’s internal
implementation.

5.11.2 Testing on the target computer system. The developer’s system qualification testing shall
include testing on the target computer system or an alternative system|approved|by the acquirer.

5.11.3 Preparing for system qualification testing. The developer shall participate in developing
and recording theandltest procedures|to be used for system
qualification testing and the between the test cases and the system requirements. For
software systems, the results shall include all applicable items in the Software Test Description
DID (seel6.2). The developer shall participate in preparing the[test data]needed to carry

out the test cases and in providing the acquirer advance notice of the[time and location|of system
qualification testing.

5.11.4 Dry run of system qualification testing. If system qualification testing is to be witnessed
by the acquirer, the developer shall participate in dry running the system test cases and
procedures to ensure that they are complete and accurate and that the system is ready for
witnessed testing. The developer shall record the software-related results of this activity in
appropriate software development files (SDFs) and shall participate in updating the system test
cases and procedures as appropriate.

5.11.5 Performing system qualification testing. The developer shall participate in system
gualification testing. This participation shall be in accordance with the system test cases and
procedures.

5.11.6 Revision and retesting. The developer shall make necessary revisions to the software,
provide the acquirer advance notice of retesting, participate in all necessary retesting, and update
the software development files (SDFs) and other software products as needed, based on the
results of system qualification testing.

MIL-STD-498 (PDF version) 5. Detailed Requirements Page 20

5.11.7 Analyzing and recording system qualification test results. The developer shall participate
in analyzing and recording the results of system qualification testing. For software systems, the
result shall include all applicable items in the Software Test Report DID (see|6.2).

| 5.12| Preparing for software use. The developer shall prepare for software use in accordance
with the following requirements.

Note: If software is developed in multiple builds, the developer’s planning should identify what
software, if any, is to be fielded to users in each build and the extent of fielding (for example,
full fielding or fielding to selected evaluators only). Preparing for software use in each build
should be interpreted to include those activities necessary to carry out the fielding plans for
that build.

5.12.1 Preparing the executable software. The developer shall prepare the[executable]software
for each user site, including any batch files, command files, data files, or other software files
needed to install and operate the software on its target computer(s). The result shall include all
applicable items in the executable software section of the Software Product Specification
DID (seel6.2).

Note: To order only the executable software (delaying delivery of source files and associated
support information to a later build), the acquirer can use the SPS DID, tailoring out all but
the executable software section of that DID.

5.12.2 Preparing version descriptions for user sites. The developer shall identify and record the
exact{version]of software prepared for each user site. The information shall include all applicable
items in the Software Version Description DID (seel6.2).

5.12.3 Preparing user manuals. The developer shall prepare user manuals in accordance with
the following requirements.

Note: Few, if any, systems will need all of the manuals in this section. The intent is for the
acquirer, with input from the developer, to determine which manuals are appropriate for a
given system and to require the development of only those manuals. All DIDs permit
substitution of commercial or other manuals that contain the required information. The
manuals in this section are normally developed in parallel with software development, ready
for use in CSCI testing.

5.12.3.1 Software user manuals. The developer shall identify and record information needed
by hands-on users of the software (persons who will both operate the software and make use of
its results). The information shall include all applicable items in the Software User Manual[(SUM)
DID (see 6.2].

5.12.3.2 Software input/output manuals. The developer shall identify and record information
needed by persons who will submit inputs to, and receive outputs from, the software, relying on
others to operate the software in a computer center or other centralized or networked software
installation. The information shall include all applicable items in the Software Input/Output Manual
DID (see6.2).

MIL-STD-498 (PDF version) 5. Detailed Requirements Page 21

5.12.3.3 Software center operator manuals. The developer shall identify and record information
needed by persons who will operate the software in a computer center or other centralized or
networked software installation, so that it can be used by others. The information shall include
all applicable items in the Software Center Operator Manual[(SCOM) DID (see[6.2].

5.12.3.4 Computer operation manuals. The developer shall identify and record information
needed to operate the computers on which the software will run. The information shall include
all applicable items in the Computer Operation Manual DID (seel6.2).

5.12.4 Installation at user sites. The developer shall:

a. Install and check out the executable software at the user sites specified in the contract.
b. Provide training to users as specified in the contract.

c. Provide other assistance to user sites as specified in the contract.

| 5.13 | Preparing for|software transition| The developer shall prepare for software transition in
accordance with the following requirements.

Note: If software is developed in multiple builds, the developer’s planning should identify what
software, if any, is to be transitioned to the support agency in each build. Preparing for
software transition in each build should be interpreted to include those activities necessary
to carry out the transition plans for that build.

5.13.1 Preparing the executable software. The developer shall prepare the[executable|software
to be transitioned to the support site, including any batch files, command files, data files, or other
software files needed to install and operate the software on its target computer(s). The result
shall include all applicable items in the executable software section of the Software Product
Specification DID (see[6.2).

5.13.2 Preparing source files. The developer shall prepare thfiles to be transitioned to
the support site, including any batch files, command files, data files, or other files needed to
regenerate the executable software. The result shall include all applicable items in the source
file section of the Software Product Specification@ DID (see6.2].

5.13.3 Preparing version descriptions for the support site. The developer shall identify and record
the exact[version| of software prepared for the support site. The information shall include all
applicable items in the Software Version Description|(SVD)| DID (seel6.2).

5.13.4 Preparing the "as built" CSCI design and related information. The developer shall update
the design description of each CSCI to match the[" ilt"| software and shall define and record:
the methods to be used to copies of the software, the measured computer hardware
for the CSCI, other information needed to [support]the software, and
traceability |between the CSCl's source files and software units and between the computer
hardware resource utilization measurements and the CSCI requirements concerning them. The

result shall include all applicable items in the_qualification, software support, and traceability
secti